James Webb – First Fully Aligned Image

Fine phasing of James Webb’s honeycomb mirror segments is now complete, revealing this first fully aligned image of star 2MASS J17554042+6551277 via the telescope’s NIRCam sensor.

This test image has exceeded NASAs expectations in terms of resolving power and clarity. You can even see well defined distant spiral galaxies in the background.

Unlike the Hubble space telescope the wavelengths of light gathered here is around 2 microns, within the infrared band of the electromagnetic spectrum (the region Webb has been designed to observe). These are wavelengths longer than the human eye can detect but ideal for revealing the evolutionary structure and morphology of stars and distant galaxies.

The Webb team will now continue with calibration of the on-board spectrographs, completing the full scientific instrument setup.

This process is expected to take several more months, but so far so good.

James Webb First Light

Here is the first ever image processed from the James Webb space telescope’s primary mirror. It shows copies of a distant star HD 84406, individually imaged through Webb’s 18 honey-comb like mirror segments.

This is part of the primary mirror alignment phase. A bit like the process backyard observers go through when we collimate our telescopes.

Over the next several weeks these individual points will converge to form a single image of the star, completing the alignment process and ensuring all components of the 6.5 meter primary mirror are working as one.

You can see the gold plated hexagonal components of the primary mirror in this second picture, which is a selfie the telescope took of its main mirror from outer space.

The astrophysical community awaits Webb’s first active mission pictures which I understand will be images of three of the largest low-albedo asteroids, as well as Jupiter’s red spot and Neptune’s southern polar vortex.