The Age of the Universe and Lord Kelvin

Our 2023/2024 season of astronomy outreach at Abriachan Forest ended on a high note this Saturday with a visit from Martin Hendry, Professor of Gravitational Astrophysics and Cosmology. Since 2022 Martin has been acting vice principle at the University of Glasgow and was formerly head of the school of Physics and Astronomy.

Martin’s packed talk was broadly about the age of the universe, but touched on the age of stars, stellar classification, cepheid variables, rates of cosmic expansion, and the important work undertaken by female astronomers like Henrietta Leavitt, Annie Jump Cannon and Williamina Fleming, who were instrumental in helping us calculate the distances to star clusters and galaxies. A special tribute was also paid to Lord Kelvin on the 2024 bicentenary of his birth.

Alas, we were not graced with clear skies for open air stargazing, so following Martin’s talk we both hosted a virtual planetarium tour instead, referencing many of the clusters, galaxies and some stars mentioned in the main talk.

Thanks to Suzann for the Kelvin and Constellation witches fingers which captivated some of the younger audience members, and my wife Judith for the excellent home bakes. I look forward to announcing our new new 2024/2025 program in October. Stay tuned for details.

Calculations of the age of the universe using a variety of datasets and methodologies, including galactic red shifts and globular clusters have broadly placed the age of the universe at about 14 billion years old.

Essential Reading on Black Holes

I rarely recommend popular science books but feel I need to make an exception with Brian Cox and Jeff Forshaw’s excellent ‘Black Holes – The Key To Understanding The Universe’ published by William Collins.

For me this book surpasses A Brief History of Time, and joins a tiny population of science books that aren’t afraid to delve into some actual mathematics, adding richness and depth to the analogy laden exposition of most popular science books.

Within the pages you’ll find real equations and Penrose diagrams explaining the basics of special and general relativity. These sections will certainly challenge many readers but also equip them for the chapters that follow, when Cox and Forshaw dive into the wonderful abstract world of event horizons, singularities, worm holes, rotating black holes, multiverses and other weird and exotic by products of general relativity and quantum theory.

The material here feels very up to date and references many recent discoveries and theoretical papers. The style is sharp, understandable and with just the right hint of dry humour to keep things light hearted and entertaining.

I accessed the very affordably Kindle version but have enjoyed it so much I’ll be treating myself to a hardback copy – not least because many of the excellent diagrams are in full colour – something my ebook reader can’t reproduce.

DIY Fractals

It’s been a while since I’ve posted anything mathematical.

Fractals are everywhere in nature. In this video I show some examples of fractals you can find in your own garden, how computers generate fractals and finally some fun examples you can construct with nothing more than some paper and colouring pens.

Covid-19 Infection Rates

I wanted to do my bit to highlight the need to socially distance at the moment. In addition to outreach astronomy I’ve worked as a mathematical modeller and simulation programmer for many years. Yesterday I decided to create a very simple demonstration to show how infectious Covid-19 is relative to something like the flu.

The red balls represent new cases of Covid-19 based on one individual passing the virus on and creating a human chain reaction. The blue balls represent the same situation for flu. The simulation shows you how many more people will become infected with Covid-19 relative to flu after the same number of transmission waves (9 in this case).

Typically an individual with flu will pass the virus onto 1.3 other people (called the R0 value). With Covid 19 this spreading rate is much higher – between 2.3 and 3. At its worst therefore an infected person will pass the virus onto 3 other people. That might not sound like much but due to exponential growth this level of transmission is like a bomb going off.

Stay safe everyone and please heed the guidelines. With proper social distancing the cascade on the right can be repressed.

Note: This simulation is not validated in any way by medical experts and is for illustrative purposes only.

Developed by S Mackintosh (Mackintosh Modelling & Data Simulations)
modulouniverse.com

 

Space Camp in Thurso

67268006_924191647926600_1725629361731665920_o

Some photo highlights from the Summer Space Camp up in Thurso’s band new Newton Room.  I had a great time delivering Mars and astronomy based workshops on day 2.  We covered the observational history of Mars, its surface geology, the night sky, the life and death of stars and spectroscopy.  Interactive sections included Mars cratering, galaxy frisbees, star cluster balloons and DIY spectrascopes.

Picture rights Skills Development Scotland.

The Mathematics of Gods

As well as providing the bedstone for modern physics and the sciences, mathematics has often strayed into the metaphysical.  It’s therefore no coincidence that many theologians and mystics were often competent mathematicians.

One such theologian and philosopher was Anselm of Canterbury (1033–1109) who proposed a so-called ontological argument in the second and third chapters of his famous Proslogion.  In essence the argument attempts to use the language of Greek axiomatic logic to prove the existence of god.

St. Anselm in carbonite on the exterior of Canterbury Cathedral.

St. Anselm, entombed in carbonite, on the exterior of Canterbury Cathedral.

“For I do not seek to understand in order that I may believe, but I believe in order to understand!  For this also I believe – ‘that unless I believe I shall not understand’.”  – St Anselm of Canterbury circa 1077

Anselm’s Ontological Argument

Here is Anselm’s argument step by step:

1.  Let ‘God’ be a being about which nothing greater can be conceived or imagined.

2.  ‘God’ exists as an idea in the human mind.

3.  A being that exists as an idea in the mind and in reality is clearly greater than a being that exists only as an idea in the mind.

4.  Thus, if God exists only as an idea in the mind, we can imagine something greater than God.

5.  But we cannot imagine something that is greater than God (a contradiction of statement 1).

6.  Therefore, ‘God’ exists.

Whilst this argument cannot be judged as serious mathematics it does offer an interesting insight into the historical interplay between religion, philosophy and mathematics.  Much of the modern fundamentals of mathematics use analogous axiomatic-theoretic language to build desired rigour.  It also has an undeniable elegance – it attempts to prove existence using only the definition of God as a basis.

Godel and God

Surprisingly Anselm’s original ontological argument has been developed into modern times, most famously by the Austrian meta-mathematician Kurt Godel.

Kurt Godel

Kurt Godel was part of a depressing list of mathematicians whose life ended in tragedy – in Godels case he starved himself to death.

This work came to light only after Godel’s death in 1978.  Famous for his incompleteness theorem, Godel was a tangential thinker who liked to stress-test logical and axiomatic structures and explore where they could lead – sometimes rigour and clarity yes, but also outright insanity.

Essentially Godel took Anselm’s original argument and set about adding mathematical rigour using the formal framework of modal logic.  Achieving this involved building definitions and axioms over and above the more simplistic construction of Anselm.  At the root of this construction was the idea of something being true on a finite number of infinite worlds (weak truth), or on all possible world (strong truth).

The full proof is very long so I’ll record only a flavour of it here using some of the definitions, axioms and Theorems Godel constructed.

  • Definition 1: x is God-like if and only if x has as essential properties those and only those properties which are positive
  • Definition 2: A is an essence of x if and only if for every property B, x has B necessarily if and only if A entails B
  • Definition 3: x necessarily exists if and only if every essence of x is necessarily exemplified
  • Definition 4: if x is an object in some world, then the property P is said to be an essence of x if P(x) is true in that world and if P entails all other properties that x has in that world.
  • Axiom 1: Any property entailed by—i.e., strictly implied by—a positive property is positive
  • Axiom 2: A property is positive if and only if its negation is not positive
  • Axiom 3: The property of being God-like is positive
  • Axiom 4: If a property is positive, then it is necessarily positive
  • Axiom 5: Necessary existence is a positive property
  • Theorem 1: If a property is positive, then it is consistent, i.e., possibly exemplified.
  • Theorem 2: The property of being God-like is consistent.
  • Theorem 3: If something is God-like, then the property of being God-like is an essence of that thing.
  • Theorem 4: Necessarily, the property of being God-like is exemplified.

And using formal modal logic notation:

Godel's modal logic proof

It’s important to note that this work did not imply Godel believed in God.  In fact his scepticism was likely the reason this work was kept under wraps for most of his life.  His friend Oskar Morgenstern stated that Godel didn’t disclose out of fear others might think “that he actually believes in God, whereas he is only engaged in a logical investigation – that is, in showing that such a proof with classical assumptions correspondingly axiomatized, is possible.”.

It’s interesting that Godel’s proof only considered existence – he didn’t extend the work into that equally important ream of mathematical fundamentals – uniqueness.  Which leaves open the possibility of a universe overcrowded with powerful deities!

“The more I think about language, the more it amazes me that people ever understand each other at all.” – Kurt Godel

Hyperspace and La Grande Hypercube

Hyperspace.  What does it mean?  Science fiction has largely hijacked the word but its real foundations are embedded in the mathematics of higher or n-dimensional space pioneered by Bernhard Riemann in the late 19th century.  Riemann lay the foundations for extra dimensional spaces and so-called non-euclidean geometries that were self consistent and logical.  His Riemann tensor generalised geometry to curved surfaces, breaking free from over two millennia of Euclid’s dominance over the subject.  In this new geometry of the curved surface, parallel lines can intersect and the angles of a triangle do not necessarily add to 180 degrees.

Bernhard Riemann broke past the established doctrine of 'flat' Euclidean geometry.

Bernhard Riemann broke past the established doctrine of ‘flat’ Euclidean geometry.

‘Therefore, either the reality on which our space is based must form a discrete manifold or else the reason for the metric relationships must be sought for, externally, in the binding forces acting on it’ – Bernhard Riemann

Riemann’s curvature tensor was part of a developmental framework encapsulating the idea that forces could be considered as alterations in the fabric or ‘geometry’ of space rather than an instantaneous phenomena acting at a distance.  The reason a three dimensional creature felt the effects of a force could then be explained by a warpage in the fabric of the four dimensional geometry it moved through.  The analogy of a 2D ant residing on an undulating 3D surface is a good way to understand this thought process.  As the ant moves around it cannot see the curvature of the larger 3D space it inhabits yet it feels the effects as a force as it moves across the world.

Hyperspace in Science Fiction

Han-Solo and Chewbacca are seasoned hyperspace users in the film Star Wars.

Han-Solo and Chewbacca are seasoned hyperspace users in the film Star Wars.

‘Traveling through hyperspace ain’t like dusting crops, boy!’ – Han Solo

Hyperspace has been popularised in science fiction since the late 1920s and early 1930s, coincident with Albert Einstein’s special and general theories of relativity which became widely accepted around this time, and involved the idea of time as an additional dimension.  By directly applying the Riemann tensor to his work on universal gravity Einstein was able to powerfully simplify his approach and construct his general theory of relativity.  It was this application of the multi-dimensional to our understanding of gravity, light and space-time that propelled hyperspace into fiction and art. In a science fiction context the word represents a vague notion of transcending into higher dimensions to facilitate quick interstellar travel (Star Wars), or in the case of Howard Phillips Lovecraft’s ‘Dreams in the Witch House’, a gateway into a shadow realm of cosmic horrors.  It also spawned the notion of the worm hole – a higher dimensional bridge permitting a traveler to move between normally disconnected and independent spaces (or possibly times).

Lovecraft used concepts from hyperspace and non-euclidean geometry in his cosmic horror tale 'Dreams in The Witch House'.

Lovecraft used concepts from hyperspace and non-euclidean geometry in his cosmic horror tale ‘Dreams in The Witch House’.

‘One afternoon there was a discussion of possible freakish curvatures in space, and of theoretical points of approach or even contact between our part of the cosmos and various other regions as distant as the farthest stars or the transgalactic gulfs themselves – or even as fabulously remote as the tentatively conceivable cosmic units beyond the whole Einsteinian space-time continuum.’ – The Dreams in the Witch House by H P Lovecraft.

So how far away is the real mathematics of hyperspace from this popularised notion?  And can mathematics let us glimpse into these mysterious spaces?

Mathematical Hyperspace – a journey into the 4th Dimension

Mathematics can represent higher dimensions with relative ease and in doing so can often reduce formerly complex problems to more elegant and simpler forms. But what can mathematics reveal to us visually or conceptually about higher dimensions?   It’s a vast topic but let’s try exploring one geometrical dimension up – the fourth dimension – by constructing one of the simplest 4D objects to conceptualise, the hypercube.  Follow me on an imaginative journey into the fourth dimension!

Journey into the fourth dimension

  • To kickstart our journey into hyperspace lets begin by imagining a single point in space – a singularity.  A singularity has no dimensions so resides in zero dimensional space – the sort of place the universe may have originated from or a black hole will take you.
  • Now take this point and draw an imaginary straight line from it to a second point.  We’re now in 1D space and have 2 points with a line segment connecting them.
  • Now take each point of our line and drag it up or down to make a square with 4 points.  Here we are in two dimensional space.  How many line segments do we have now?
  • Next  grab  those four points and pull them up or down at a right angle to make a cube.   We’re now in familiar 3-dimensional space with 8 points and 12 connecting line segments.

Now for an imaginative leap into hyperspace.  Let’s pull those 8 points out of our reality and into the fourth dimension!  What do you see?  Or let’s put it another way – what should we expect to see? Although we can’t directly visualise it we can infer some of the properties of this four dimensional cube from mathematical extrapolation.  For starters it should have 16 points. How about edges?  Well each point will connect to 4 edges so that’s 4 x 16.  But each vertex will share all its edges with another vertex so we half this value.  Therefore it must have 4 x 16 /2 = 32 edges.

Dimension Descriptor Points Edges
0 Singularity 1 0
1 Line 2 1
2 Square 4 4
3 Cube 8 12
4 Hypercube 16 32

This 4D analogue of a cube is also known as a Tesseract.  Now that we’ve inferred some of its properties can we say anything about what it might look like?  Well in the same way that a sphere only reveals a shadow of itself on a flat plane, we can only visualise a 4D hypercube from its shadow projected into our 3D world.  As it happens such a shadowy denizen from another dimension actually exists on earth.

La Grande Arche a la Hypercube

Most Parisians walking in La Defense are probably oblivious to the fact that there’s a manifestation of the fourth dimension nearby. La Grande Arche was designed by Danish architect Johann Otto von Spreckelsen.  It’s a mystery whether or not this grand design was ever consciously inspired by mathematics but it’s nonetheless a beautiful and radical piece of architecture.

A real earth based projection of a four dimensional cube - The famous Paris arch

A real earth based projection of a four dimensional cube – The famous Paris arch

Despite being only a shadow of a 4D cube this structure contains most of the defining properties of a 4D cube – crucially it has 16 points connecting 32 edges.  One of the properties it lacks is uniformity of distance along its edges.  In the same way a square in two dimensions has equal sides, a real hypercube in 4D space would have all its connecting edges exactly the same length.  But this projection clearly doesn’t (note the lengths of the inner edges are shorter than the outer edges).  That’s because any projection from a higher to a lower dimension doesn’t necessarily preserve the distance between points, or indeed the angles between edges and faces.  Looking at the shadow of a cube on a piece of paper is a good example of this; no orientation can preserve the three dimensional distances between points.  In other words information is lost whenever we try to represent a higher dimensional object in a lower dimensional setting.

Projection of a hypercube  rotation about a single plane bisecting its middle.

Projection of a hypercube rotating about a single plane bisecting its center.

Mathematics can even rotate the hypercube and we can observe the weird and impossible dance made by its three dimensional shadow (above).  The object is seen to move through itself in a way that defies the rational behavior of solids in our 3D world.  The same effect can be seen by rotating a 3D cube in front of a lamp and watching the behavior of its two dimensional projection.  You would really see these  sort of visual oddities if four dimensional objects or beings entered our 3D world.

n-cubes

Of course mathematically cubes don’t stop in 4 dimensions. You can move into five, six or even more dimensions and build n-cubes in all these worlds. For example, a hypercube in n dimensions will have  2^n vertices. From each of these vertices there will be n edges emerging, each of which are counted twice, so the N-dimensional cube has n.2^{n-1} edges.  I’ll leave the task of imagining such n-cubes to the reader!

Dimension Descriptor Points Edges
n n-cube  2^n  n.2^{n-1}